
Monte Carlo series analysis of irreversible self-avoiding walks. II. The growing self-avoiding

walk

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 279

(http://iopscience.iop.org/0305-4470/19/2/021)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 279-289. Printed in Great Britain 

Monte Carlo series analysis of irreversible 
self-avoiding walks: 11. The growing self-avoiding walk 
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t Institut fur  Festkorperforschung der Kemforschungsanlage Julich, D-5170 Julich, West 
Germany 
$ Exxon Research and Engineering Company, Annandale, NJ 08801, USA 

Received 27 March 1985, in final form 6 June 1985 

Abstract. We study the scaling behaviour of the recently introduced growing SAW: We 
apply a ratio type analysis of Monte Carlo generated enumeration data to extract the 
critical indices. For the two-dimensional walk we find the usual SAW values for these 
indices. For the three-dimensional walk the true asymptotic behaviour can only be studied 
for extremely long chains. However, on the basis of our data, we can exclude the possibility 
of an upper critical dimension d, = 3. 

1. Introduction 

The study of kinetic growth phenomena has recently attracted considerable attention 
(Family and Landau 1984). In the first paper of this series (Kremer and Lyklema 
1985bj we presented a detailed analysis of the indefinitely growing SAW (IGSAW, Kremer 
and Lyklema 1985a). This is a truly kinetic walk, which is constructed in such a way 
that it recognises cages, independent of the size of the cage. Another interesting model 
in this context is the subject of the present paper, the recently introduced growing 
version of the self-avoiding walk (GSAW, Majid et a1 1984a, b, p 36, Lyklema and 
Kremer 1984a, b, Hemmer and Hemmer 1984). It has been suggested by these authors 
that this walk can be used as a model to study the growth process of a linear polymer 
in the case where the growth rate is much faster than the relaxation time of the polymer. 
From their study of this walk (called KGW instead of GSAW) Majid et a1 (1984a, b) 
conclude that it belongs to a different universality class from the usual self-avoiding 
walk (SAW). They conclude that Y, the exponent of the mean square end-to-end distance 

( R 2 (  N ) )  - N2” 

equals 0.66 in two dimensions and 0.50 in three dimensions. In addition they find an 
upper critical dimension (d,) of three. Their results are obtained from Monte Carlo 
simulations, exact enumerations ( d  = 2 only) and a Flory type theory. The present 
authors have studied the same model (from now on called GSAW) on the square lattice 
and on the diamond lattice by exactly enumerating all possible walks up to N = 22 
steps. We find v=O.68 (Lyklema and Kremer 1984a, b)  on the square lattice, in 
agreement with Majid et al (1984a, b). However their result v = 4 and d, = 3 is not 
confirmed by our exact enumeration on the diamond lattice. In a response to these 
results Peliti (1984) has given a field theoretic argument from which it follows that the 
GSAW is in the same universality class as the usual SAW. By considering the trapping 
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probability Pietronero (1984) has argued that only walks which are much longer than 
the mean survival length can show the asymptotic behaviour. From this he concludes 
that the GSAW is in the SAW universality class and that the asymptotic behaviour can 
only be studied for very large N ( N  - lo6 in three dimensions). To settle this dispute 
we have performed high precision Monte Carlo calculations for large enough N ( 2 ~ :  

N = 200; 3 ~ :  N = 700) to see the asymptotic behaviour set in. 
In the next section we give a definition of the GSAW and discuss the Monte Carlo 

simulation. In 5 3 we present the numerical results and their analysis and in § 4 we 
give the conclusions and a summary. 

2. The model 

The growing self-avoiding walk is a combination of the usual SAW and the true SAW 

(Amit et a1 1983) in the g + cc limit. In this case the one-step probability is equal to 
the inverse of the number of nearest-neighbour sites with the lowest occupation number. 
If one combines this with the self-avoiding restriction that the walk can visit a site 
only once the result is the following definition for the one-step probability P, 

P, = l /number  of unoccupied sites. (1) 

For the usual SAW, which describes the equilibrium properties of a polymer in a good 
solvent, each configuration has the same probability. Thus the one-step probability in 
this case is P, = l /qo,  independent of the surrounding. Here qo is the coordination 
number minus one. For instance, the probability to have a particular N step walk on 
the square lattice is f (f)"-'. If the walk violates the self-avoiding condition it is 
terminated and one has to start from the beginning. For the GSAW the probability to 
have a N step walk equals II,"=, P,, with P, defined in equation (1). Here again one 
has to stop the walk when the self-avoiding condition is violated, in contrast with the 
true SAW which cannot get trapped. To visualise the random process we have given 
in figure 1 the different transition probabilities which can occur on the square lattice. 
One clearly sees the irreversibility of the process. The probability to have the 12 step 
process leading from A to B is f x  ($)'X;X 1 whereas the inverse trajectory has the 
probability of ax (i)5 x (i)6. The probability ratio of the two processes is g, that is the 
second process is almost twice as likely as the first one. The probability for this walk 
with the usual SAW rules is f (f)". The probability ratio ( A +  B)/SAW is 4.5 and  the 
ratio ( B  + A)/SAW is ( g ) 5  = 7.6 .  So clearly the GSAW probabilities are greater that the 
SAW probabilities or, in other words, early termination is more likely to happen for the 
SAW than for the GSAW. However, it should be noted that in both cases exactly the 

Figure 1. Example of a GSAW which is terminated. When the one-step probabilities differ 
from the SAW value l/q,,, it is indicated. 
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same trajectories occur. The case of the honeycomb lattice is special in the sense that 
the probability of a N step walk is the same in both directions. Here the one-step 
probability is 1 or f depending on whether there is a nearest-neighbour contact or not. 
Because the number of nearest neighbours does not change by inverting the direction, 
the product probability does not change. Also one should realise that this model is 
not truly kinetic because of the finite termination probability. 

For this model we have performed Monte Carlo simulations on the square lattice 
and on the diamond lattice. The diamond lattice is studied because it is the lattice 
with the smallest coordination number in three dimensions and one therefore expects 
to see the asymptotic behaviour earlier than on other three-dimensional lattices. We 
have used the simple sampling method (see Kremer eta1 1982). This is a straightforward 
procedure in which one chooses the new site from all the previously unoccupied sites 
with equal probabiltiy. If no unoccupied site is available the chain is terminated and 
one repeats the procedure beginning at the origin. In this way we have generated a 
very large number of chains. In two dimensions we have generated chains up to a 
length of N = 2 0 0 .  Two typical values are: 48.5~ lo6 for N =  100, acceptance rate 
22.2% and 10.5 x lo6 for N = 200, acceptance rate 2.6%. For a complete list see table 
1. In three dimensions we have generated chains with a maximum length of N = 700. 
Three typical values are: 94.7 x lo6 for N = 100, acceptance rate 96.7%; 34.5 x lo6 for 
N = 200, acceptance rate 90.9% and 17.1 x lo6 for N = 700, acceptance rate 62S0/0. 
In table 2 we give the complete results for the three-dimensional GSAW. From these 
configurations we have calculated the mean square end-to-end distance 

( ( R * ( N ) )  = ( ( r N  - r J 2 )  

( R4( N ) )  = ( R 2 (  Aq2). 

( 2 )  

(3) 

and the fourth moment 

Table 1. Mean square displacement ( R 2 ( N ) )  of the GSAW on the square lattice. Only the 
value for every fifth step is given. 

N ( R * ( N ) )  N ( R * ( N ) )  

5 
15 
25 
35 
45 
55 
65 
75 
85 
95 

105 
115 
125 
135 
145 
155 
165 
175 
185 
195 

0.000 
36.391 
69.622 

107.299 
148.882 
193.878 
242.029 
293.078 
346.875 
403.323 
462.270 
523.642 
587.285 
653.157 
72 1.047 
791.089 
863.164 
937.245 

1013.159 
1091.002 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

21.844 
52.420 
87.994 

127.703 
171.002 
217.603 
267.236 
319.659 
374.800 
432.530 
492.672 
555.207 
619.951 
686.891 
755.826 
826.948 
899.967 
975.061 

1051.898 
1130.665 
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Table 2. Mean square displacement ( R ’ ( N ) )  of the GSAW on the diamond lattice. Only 
the value for every tenth step is given. 

10 
30 
50 
70 
90 

110 
130 
I50 
170 
190 
210 
230 
250 
270 
290 
310 
330 
350 
3’10 
390 
410 
430 
450 
470 
490 
510 
530 
550 
570 
590 
610 
630 
650 
670 
690 

60.032 20 
191.793 40 
328.236 60 
464.741 80 
602.796 100 
762.023 120 
903.884 140 

105 1.791 160 
1214.152 180 
1336.428 200 
1483.345 220 
1630.692 240 
1778.772 260 
1927.134 280 
2076.091 300 
2225.43 1 320 
2375.163 340 
2525.128 360 
2675.733 380 
2826.485 400 
2977.728 420 
3129.377 440 
3281.074 460 
3433.305 480 
3 5 8 5.864 500 
3738.388 520 
3891.239 540 
4044.805 560 
4198.256 580 
4352.266 600 
4506.490 620 
4660.923 640 
48 15.7 14 660 
4970.3 18 680 
5125.640 700 

124.878 
257.117 
400.136 
531.700 
683.224 
837.615 
977.015 

1 13 1.903 
1263.176 
1409.805 
1556.96 1 
1704.749 
1852.874 
2001.61 8 
2150.668 
2300.158 
2450.157 
2600.298 
2751.079 
2902.190 
3053.458 
3205.169 
3356.987 
3509.458 
3662.067 
3814.723 
3967.940 
4121.453 
4275.186 
4429.332 
4583.755 
4738.2 15 
4892.867 
5047.815 
5203.497 

Here rN and ro are the positions of the N t h  monomer and the zeroth monomer 
respectively. In addition we have calculated the mean displacement X N  - X o  in the 
X direction in order to check the quality of the data. Ideally one expects this quantity 
to be zero. Using this deviation we have typically found a discrepancy of smaller than 
0.01% of ( R 2 ( N ) ) 1 ’ 2 ,  showing the high accuracy of the data. The calculations have 
been performed in IBM extended precision (real *16). 

3. Results 

To calculate U, the correlation length exponent, we use a standard method from series 
analysis (see, e.g., Djordjevic et a1 1983). This method has been used by us (Kremer 
and Lyklema 1985b, Lyklema and Kremer 1985) successfully to analyse high accuracy 
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Monte Carlo data of different self-avoiding walk problems. The basic underlying 
assumption is about the asymptotic behaviour of the mean square end-to-end distance 

( R 2 ( N ) ) = A N Z ” ( 1 + B N - A + C N - ’ + .  . .) (4) 

(see, e.g., Privman 1984). The conventional way of analysing Monte Carlo data is to 
ignore the correction to scaling and calculate v from the slope of the plot of log(R2( N ) )  
against log N. Because a log-log plot tends to smooth the curvature it is very difficult 
to decide from such a plot if an  asymptotic analysis is valid or not. A more sophisticated 
analysis can be made if we define an effective exponent v ( N )  

l og [ (R2(N+ i ) ) / ( R 2 ( N -  i ) ) ]  
log[( N + i ) / (  N - i ) ]  

v ( N ) = i  (5) 

If one inserts (4) in this definition the result is 

v ( N )  = v-+BN-J-’CN-’+ 2 * . .. ( 6 )  

From a plot of v( N )  against N-” or N-’ ,  depending on whether A is smaller or  larger 
than one, one can estimate the value of v very accurately by a linear extrapolation of 
v ( N )  for N values which are in the asymptotic scaling regime. To use this method 
for the analysis of Monte Carlo data instead of exact enumeration results, one needs 
very high accuracy data in order to minimise the statistical scatter in v ( N ) .  This 
analysis can be improved significantly if one chooses a relative large i value in (5) 
(see, e.g., Lyklema and Kremer 1985). The absolute error of the denominator of course 
is the same for all i values. However the relative error in v ( N )  will improve with a 
factor i. Of course one has to check if a bias is introduced for large i values but due 
to the symmetric definition (5) this seems to occur only for such large i values that 
the expansion of the logarithm is not valid anymore. Obviously one cannot obtain 
good enough accuracy for very long chains. This is because the variance [((R4)- 
(R2)Z)1’2/(R2)2] does not vanish for these walks and it becomes very difficult to cover 
phase space sufficiently. For the conventional way of analysing this is an even more 
serious problem because then one needs results for much larger N values. Also one 
has no criterion to decide if the asymptotic regime is reached already. 

The exponent y is calculated from the partition function which for a finite number 
of steps ( N )  is defined as 

P (  i, C,) is the one-step probability for the ith step of a N-step walk with configuration 
CN. For an  exact enumeration one knows the exact probabilities and the exact number 
of configurations. This cannot be calculated in a Monte Carlo sampling. However it 
is obvious that the probability of having a chain of length N equals the acceptance 
rate A ( N )  

number of generated walks of length N 
A( N )  = number of attempts to generate a walk of length N ’  (8) 

Now we make the identification Z ( N ) = A ( N )  and assume the same asymptotic 
behaviour as for the usual SAW (de  Gennes 1979) 

Z ( N )  - [(9eff)/401”y-1. ( 9 )  
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The exponent y is calculated from the slope of a log-log plot of Z (  N + i ) / Z (  N - i)  
against ( N  + i ) / (  N - i). 

4eff N + i  
= 2i log -+ ( y  - 1) log - 

log 2( N - i )  4 0  N - i  
Z ( N + i )  

4 e f f  = 2i log -, 
90 N-a: 

By extrapolating this curve we also find immediately an  estimate for the value of 9eff. 
To eliminate the effect of the constant in (10) one can study 

( N +  i ) ( N  - i) 
N 2  

z( 
= ( y - 1) log 

Z ( N + i )  
-log 

log Z ( N )  Z ( N - 1 )  

= ( 1 - y ) i 2 / ~ ’ .  (11) 

As the extrapolation plotted against 1 / N 2  has to go through the origin, one can check 
in this way if the asymptotic analysis is valid. 

3.1. 2 0  GSAW 

To compare the two methods of analysing the mean square end-to-end distance we 
present in figure 2 the corresponding plots. The estimate for Y from the slope of figure 
2(a) is 0.70. This value is obtained from chains with a maximum length of N = 200 
on the square lattice. In an  earlier Monte Carlo study Majid er a1 (1984a, b)  found 
v = 0.68 from chains with a maximum length of N = 350 on the same lattice, a length 
for which the ‘effective’ exponent v( N )  is approximately 0.72. The difference is possibly 
due to the insufficient Monte Carlo quality of their data. As already discussed in the 
presentation of the method of analysis, one needs a very large number of samples in 
order to obtain a reliable result and certainly a few thousand chains are not sufficient 
for an accurate analysis. This can be understood from the asymptotic value ( N  = 200) 
o f  the variance. On the square lattice we find 

= 0.746. 
( R4( N ) )  - ( R2( N ) ) 2  ( ( R 2 ( N ) )  

This high value, which shows the non-vanishing variance and the width of the distribu- 
tion function, illustrates again the need for high precision Monte Carlo data of relatively 
short chains, to make a reliable analysis possible. The other drawback of this method 
is also clear from figure 2(a);  it is impossible to judge if the asymptotic regime has 
been reached. Only then is this analysis valid. In figure 2( b )  we have shown the result 
of the alternative method. We have plotted v( N )  with i = 5 as defined in (5) for N 
values between 40 and 200. Compared with the same analysis with i = 1 this does not 
introduce a bias, but it increases the accuracy. The value of v ( N )  is continuously 
increasing, starting at 0.65 for N = 40. For N = 200 one finds v = 0.70, in agreement 
with the result from figure 2(a).  The advantage of the method is clear; one sees 
immediately that this value is not correct but is likely to extrapolate to v = i, because 
the slope is still increasing. To give a full numerical analysis, which would show that 
a linear extrapolation results in v = 0.75, one has to generate chains u p  to a length 
N-500. We estimate that only for these long chains can the asymptotic behaviour 
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log N 

i 

0 6 5 i  
0 0 01 0 02 

I I N  

Figure 2. ( a )  A log-log plot of ( R2( N ) )  against N for N values between 40 and 200 on the 
square lattice. From the slope (broken line) one finds u*0.70. ( b )  A plot of v ( N )  
calculated from ( R 2 ( N ) )  (equation ( 5 ) )  with i = 5  against 1 / N  for n values between 40 
and 200 on the square lattice. 

be studied and the correction to scaling exponent obtained. That one needs this 
correction to scaling exponent A to extrapolate correctly has been shown for the usual 
SAW (Djordjevic et a1 1983, Lyklema and Kremer 1985). Using the same value for A 
(0.84) we found for the SAW did not result in a satisfactory extrapolation. This shows 
that the asymptotic scaling regime has not been reached yet. That an extrapolation of 
v( N )  in figure 2( b )  cannot give a larger v value than a follows from the observation 
that always (R*( N)j,,A, < (R'( N ) j S A W .  Therefore the SAW value v = a  is an upper 
limit. A similar analysis for the fourth moment gives the same result. 

The other quantity of interest is the exponent y which governs the asymptotic 
behaviour of the partition function (see equation (9)). In figure 3 we show a log-log 
plot of Z ( N + l ) / Z ( N - 1 )  against ( N + l ) / ( N - 1 ) .  From the slope we estimate y =  
1.34. This value is confirmed by the analysis according to (11). However due to the 
additional difference in this expression, the relative error is much larger. This also 
explains why one cannot calculate the correction to scaling exponent from these data, 
although the asymptotic scaling regime apparently has been reached. If one adds a 
correction term (1 + B N - A )  to (9 ) ,  this results in an additional term -2iABN-'A''' in 
(10). This we cannot observe because of the leading ( y - 1)/ N behaviour. In equation 
(11) the 1 / N  term has disappeared, but now the fluctuations in the data are too large 
to distinguish between 1 / N 2  and l /NA+'  with A <  1. Finally averaging the slopes 
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calculated from (10) for i values 10, 14 and 18 in the range 110< N < 190 results in 
an estimate of y = 1.343 * 0.003. This is in excellent agreement with the SAW value 

the connectivity constant qefi = 2.934 a value which has been found already from the 
exact enumeration results (Lyklema and Kremer 1984). This value, which is much 
larger than the SAW value 2.638 15 (Enting and Guttmann 1985), reflects the ability of 
the GSAW to avoid traps. 

43- 3 2 -  1.344 (Nienhuis 1982). From an extrapolation of the data in figure 3 we find for 

0 
/ 

/ 

0 0 025 0 05 
log[~Nt1)IlN-1II 

Figure 3. A log-log plot of Z ( N  + 1)/Z( N - 1) against ( N +  1) / (  N - 1) for N values 
between 40 and 200 on the square lattice. From the slope (broken line) one finds y = 1.34. 

3.2. 3 0  GSAW 

In three dimensions the situation for a similar numerical analysis is not as favourable. 
Although the number of nearest neighbours on the diamond lattice is the same as on 
the square lattice, it is much more difficult to create a trap. On the square lattice the 
walk can get trapped already at the eighth step whereas on the dimaond lattice it takes 
14 steps before trapping can occur. Following Pietronero (1984) we estimate the order 
of magnitude of the trapping probability for the square lattice to be (4)4 = and for 
the diamond lattice ( f )6  = &. This prediction agrees very well with the numerical result 
in two dimensions of Hemmer and Hemmer (1984). Thus in order to see the asymptotic 
behaviour one needs chains much longer than 80 bonds on the square lattice and 700 
bonds on the diamond lattice. However in the latter case one expects to see at least 
a bending towards the expected asymptotic result (0.59) in a plot of v( N )  against 1/ N 
at N-700. From Pietronero’s argument it is also clear that only on the diamond 
lattice can one expect to see a glimpse of the asymptotic behaviour. From this discussion 
it is clear that similar convincing results as for the 2~ walk cannot be given in three 
dimensions. In figure 4 we show a plot of v( N )  against 1/ N for 180 < N < 700. Again 
v( N )  is calculated using (5), now with i = 13. Comparison with an identical figure 
for i = 1 showed that this large i value does not introduce a bias but only increases 
the accuracy. From this figure we estimate that the error in v ( N )  is k0.002. This is 
small enough to show that after N > 400 there is a clear trend upward to the expected 
value v = 0.59. For N = 700 we find v( N )  - 0.523 u p  from a ‘plateau’ value somewhat 
smaller than 0.521. We estimate that in order to see a v ( N )  value 0.53 one has to 
study chains of length N - 2500. 

This is a length for which it is already hard to get good statistics. Thus it is 
impossible to study the real asymptotic behaviour of the GSAW in three dimensions 
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0531 " ' " * " ' t 

0.60 - 
(bl 

I I 
0 05 0 10 

0 50 

1 / r Y  

Figure 4. ( a )  A plot of u ( N )  calculated from ( R 2 ( N ) )  (equation ( 5 ) )  with i =  13 plotted 
against l /  N for N values between 180 and 700 on the diamond lattice. ( b )  v ( N )  i$ shown 
for all N values. The crosses indicate measured points. For N > 700 the steep increase 
shows the expected behaviour ( Y 0.59). 

numerically. Also the study of the partition function Z (  N )  (equation (9)) for N < 700 
does not give information about the asymptotic behaviour. However the slope ( y - 1) 
of equation (10) has increased to -0.04 for N - 7 0 0 ,  excluding y = 1. These results 
clearly exclude the possibility of an upper critical dimension d ,  = 3. 

4. Discussion 

We have presented a detailed numerical study of the recently introduced GSAW. We 
have used a ratio method to analyse high accuracy Monte Carlo data, extending the 
exact enumeration results for N G 22 to N values of 200 (ZD) and 700 ( 3 ~ )  respectively. 
This method, which has been used successfully for the indefinitely growing SAW (Kremer 
and Lyklema 1985a, b)  and the usual S A W  (Lyklema and Kremer 1985). gives also here 
substantially more information about the system. As opposed to a simple log-log plot 
(see figure 2 ( a ) )  which gives an  estimate for U alone, we obtain a sequence of values 
for v( N )  (equation (5)). From this it is usually possible to give a very accurate estimate 
for v provided one has data which are accurate enough to apply this analysis. Here, 
as in the conventional log-log plot analysis one needs chains long enough to cover 
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the asymptotic regime. But even if this is not the case, and one obtains a wrong 
estimate from a log-log plot analysis, one can make a rough estimate for U from a 
ratio type analysis because the trend is known. For the GSAW on the square lattice 
this would lead to an estimate of v = 0.75 i 0.01. This is in strong contradiction with 
the earlier results from exact enumerations (Lyklema and Kremer 1984b) and Monte 
Carlo simulations (Majid et a1 1984a, b). It also shows clearly that the series analysis 
does not get into the asymptotic regime and therefore cannot give a correct result. 
This result has already been anticipated by Peliti (1984) and Pietronero (1984). Both 
authors argue that this walk has still a small but non-zero probability to get trapped. 
From this they conclude, using field theory and a self-consistent mean field type theory 
respectively, that the GSAW is in the SAW universality class. This prediction is nicely 
confirmed by our estimate for the exponent v whereas the result for the exponent y 
is in complete agreement with the SAW value (Nienhuis 1982). In three dimensions 
we have not been able to give similar good results. The sequence v( N )  however shows 
a minimum at N - 400 and then starts to increase, a behaviour which certainly excludes 
the possibility v = as suggested by Majid et a1 (1984). Also the still increasing value 
for the slope, which asymptotically would give ( y - l ) ,  does not support the notion of 
a critical dimension d, = 3. 

At this point it is appropriate to discuss a different model which has been introduced 
recently by Havlin et a1 (1984). The model, which is proposed to describe cluster 
growth for branched polymers, is parametrised by a branching parameter B. As noted 
by Havlin et a1 the choice B = 1 reduces this model to a model which is in the same 
universality class as the GSAW. In agreement with the findings of Majid et a1 (1984) 
they find v=O.68. Remarkably enough they find this result for all values of the 
branching parameter B. From this they conclude that all these models belong to the 
same universality class. However, as is now known, this result for the GSAW is wrong 
and consequently the result 0.68 for the cluster-growth model with B = 1 should be 
wrong. This obviously raises questions about the validity of the results for other E 
values also. In our opinion it is quite possible that also for this model much larger 
clusters have to be studied in order to see the asymptotic behaviour. In addition, an 
analysis similar to the one presented in this paper seems to be necessary in order to 
decide if the observation that v is independent of the branching parameter B is correct. 

To summarise we have shown that the two-dimensional GSAW has the same 
asymptotic behaviour as the usual SAW. In three dimensions the asymptotic behaviour 
only shows up for very large N values and a complete numerical analysis is not 
possible. However it is shown that the exponent v in three dimensions is not equal 
to t and that therefore the upper critical dimension is not equal to three. From the 
approximate analytical theories (Peliti 1984, Pietronero 1984) one expects to find the 
SAW values for the exponents as in the two-dimensional case. The difference between 
the SAW and the GSAW only shows up in the connectivity constant qe8, 2.64 against 
2.94. Because the GSAW has on average more sites to jump to, it is more difficult to 
create trapping situations. This explains why the asymptotic behaviour for the GSAW 

shows up only for much larger N values. 
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